§ 2.6 - Exact Equations

Given any ODE
\[y' = G(x, y), \]

If we can solve it \(\exists f(x, y) \) s.t.
\[f(x, y) = C \]
is an implicit solution. Using the chain rule,
\[\frac{d}{dx} (f(x, y)) = \frac{df}{dx} C \]

\[\Rightarrow f_x(x, y) + f_y(x, y) y' = 0 \]

\[\Rightarrow y' = -\frac{f_x(x, y)}{f_y(x, y)} \]

Therefore, we must have
\[-\frac{f_x(x, y)}{f_y(x, y)} = G(x, y), \]

If \(f(x, y) = x^2 e^y + \sin y + 5x, \)

\[f_x(x, y) = 2x e^y + 5 \]
\[f_y(x, y) = x^2 e^y + \cos y \]

\[\Rightarrow y' = \frac{-2x e^y - 5}{x^2 e^y + \cos y} \]

How would we find \(f(x, y), \) starting from ?
Suppose we start with

\[y' = G(x, y) = \frac{-M(x, y)}{N(x, y)} \]

\[\Rightarrow \quad N(x, y) \, dy = -M(x, y) \, dx \]

\[\Rightarrow \quad M(x, y) \, dx + N(x, y) \, dy = 0 \]

We would like \(M = f_x \) and \(N = f_y \). When this happens, the ODE is called **exact**. Recall that

\[f_{xy} = f_{yx} \quad \text{(if they are continuous)} \]

Thus if \(M = f_x \) and \(N = f_y \), we should have

\[M_y = N_x \]

It turns out that this is also sufficient, and so in order to check if a given ODE

\[M \, dx + N \, dy = 0 \]

is exact, we check if

\[M_y = N_x \]

\[\square \quad (2xe^y + 5) \, dx + (x^2e^y + \cos y) \, dy = 0 \]

\[\frac{\partial}{\partial y} \downarrow \quad \downarrow \frac{\partial}{\partial x} \]

\[2xe^y = 2xe^y \quad \checkmark \]

So this ODE is exact.
IF
\[Mdx + Ndy = 0 \]

IS EXACT IT MEANS THAT \(\exists f \) s.t.
\[M = f_x \text{ and } N = f_y. \]

Therefore
\[f(x,y) = \int M(x,y) \, dx + h(y) \]

AND
\[f(x,y) = \int N(x,y) \, dy + g(x) \]

\[\square \]

Solve \((2xe^y+5) \, dx + (x^2e^y + \cos y) \, dy = 0 \).

We already showed it was exact, so
\[f(x,y) = \int 2xe^y + 5 \, dx + h(y) \]
\[= x^2e^y + 5x + h(y) \]

AND
\[f(x,y) = \int x^2e^y + \cos y \, dy + g(x) \]
\[= x^2e^y + \sin y + g(x) \]

\[\Rightarrow x^2e^y + 5x + h(y) = x^2e^y + \sin y + g(x) \]

\[\Rightarrow h(y) - \sin y = g(x) - 5x \]

The only way this is possible is if
\[h(y) = \sin(y) + C \quad \text{and} \quad g(x) = 5x + C \]

Plug either of these back in
\[\Rightarrow f(x,y) = x^2e^y + \sin y + 5x = C \]

is an